Rishi: 1dentify Bot Contaminated Hosts
by IRC Nickname Evaluation

Jan Goebel
Center for Computing and Communication
RWTH Aachen University, Germany
goebel @rz.rwth-aachen.de

Thorsten Holz
Laboratory for Dependable Distributed Systems
University of Mannheim, Germany
thorsten.holz@informatik.uni-mannheim.de

Abstract

In this paper, we describe a simple, yet effective method
to detect bot-infected machines within a given network
that relies on detection of the communication channel
between bot and Command & Control server (C&C
server). The presented techniques are mainly based on
passively monitoring network traffic for unusual or sus-
picious IRC nicknames, IRC servers, and uncommon
server ports. By using n-gram analysis and a scoring
system, we are able to detect bots that use uncommon
communication channels, which are commonly not de-
tected by classical intrusion detection systems. Upon de-
tection, it is possible to determine the IP address of the
C&C server, as well as, the channels a bot joined and
the additional parameters which were set. The software
Rishi implements the mentioned features and is able to
automatically generate warning emails to report infected
machines to an administrator. Within the 10 GBit net-
work of RWTH Aachen university, we detected 82 bot-
infected machines within two weeks, some of them us-
ing communication channels not picked up by other in-
trusion detection systems.

1 Introduction and Motivation

Nowadays, remotely controllable computers (bots) are
one of the most dangerous threats in the Internet, as
they combine most of the malicious actions usually per-
formed by worms, rootkits, and Trojan horses. There-
fore, it is vital for the protection of hosts in the net-
work to detect and defang infected machines in a very
early stage. Currently, one basic action that is performed
to stop a given botnet is to disable the communication
channel for the bots by shutting down or changing the
DNS entry for the Command & Control (C&C) server.

By doing so, the bots can no longer connect to the C&C
server and thus the botherder can no longer send com-
mands to the infected machine.

However, the hosts stay infected and are in most cases
still backdoored, allowing an attacker to reclaim the ma-
chine at any time. Thus, it is necessary to find a way to
not only disable the communication channel, but to also
detect and inform the owners of contaminated systems.
Within a university environment, this is rather hard to
achieve: this kind of networks have traditionally a rather
open security policy. Students and faculty staff often
have unlimited access to the Internet and firewalls are
sometimes only used in the sensitives parts of the net-
work, whereas most of the network is not very well con-
trolled. In such an environment — and also in a lot of
networks with higher security standards — mobile users
pose a severe threat: these users have their own laptop
and connect to the network via some kind of authentica-
tion, for example with a central VPN server. The prob-
lem is that the laptops are often not secured at all, for
example important security patches are missing or the
antivirus software is outdated. Such systems are often
infected with some kind of autonomous spreading mal-
ware in the form of worms or bots. When the user now
connects to the network, the malware tries to propagate
further within the closed network and poses a threat to
other users. Detecting and cleaning up one of theses de-
vices is a hard task. In this paper, we present an accu-
rate, yet simple method to defect bot-infected machines
in a given network that relies on the fact that the bot
contacts his Command & Control server (C&C server)
directly after an infection. This communication channel
has some unique features (e.g., similarity of nicknames
used by the bot and characteristic substrings) that we try
to detect.

The paper is outlined as followed: In Section 2, we
introduce the background for our work on detecting in-
fected machines. Section 3 presents a method based on
n-gram analysis and a scoring system to detect infected
hosts within a given network and we discuss the limita-
tions in Section 4. Evaluation results are given in Sec-
tion 5 and we conclude the paper in Section 6.

2 Background and Related Work

In this section, we introduce the basics of our detection
mechanism and discuss related work.

2.1 Internet Relay Chat

Internet Relay Chat (IRC) is a concept that allows users
to communicate with each other in real time [12]. There
exist several separate networks of so called IRC servers,
which provide users with a connection to IRC. These
networks often have several thousand users online at the
same time. The users connect via IRC client programs
to a server on one of the networks (Figure 1). The server
relays information to and from other servers on the same
IRC network. Each of the different servers hosts a num-
ber of different chat rooms, called channels, which a user
can join to discuss certain topics. Every user connected
to an IRC server has its own unique username, called
nickname. Conversations within the channels can either
be private, client-to-client, or public, so that everyone in
the channel can read the messages. The channel names
can be freely chosen, but usually start with the charac-
ter “#” or “&”. Channels with the latter prefix are not
shared by all IRC servers on the network, but exist only
on a single server. Each user of the IRC network can
create new private or public channels for others to join.

/Client |

nt S Clent

’\ / IRC Server
= IRC Server IRC Server
% Client

Client

(&

Figure 1: Setup of an IRC network

IRC is a common method to remotely command and
control bots, which is described in more detail in the next
section.

2.2 Bots and Botnets

The term bot is derived from the word robot and refers
to a program which can, to some degree, act in an
autonomous manner. A computer system that can be
remotely controlled by an attacker is called a bor or
zombie. Bots started off as little helper tools, espe-
cially in the IRC community, to keep control of a pri-
vate channel or as a quiz robot, randomly posting ques-
tions. In the context of malware, bots are harmful pro-
grams, designed to do damage to other hosts on the net-
work. Moreover, bots can be grouped to form so called
botnets, consisting of several hundreds up to thousands
of hosts, whose combined power can be utilized by the
owner of the botnet to perform powerful attacks. One
of these powerful attacks are Distributed Denial of Ser-
vice (DDoS) attacks, which overwhelm the victim with a
large number of service requests. DDoS attacks are de-
scribed in more detail in the work by Mirkovic and Rei-
her [15]. Other abuses of bots can be identity theft, send-
ing of spam emails and similar nefarious purposes [9].

& S

C&C Server

Sha

iy

\§S
% Bot

Figure 2: Setup of a botnet with a central server for
Command & Control

To control a large group of bots, a Command and Con-
trol (C&C) server is utilized, which all zombie machines
connect to and receive instructions from (Figure 2). A
common method of an attacker to communicate with the
botnet is to use IRC, which we described in the previous
section. In this case, the infected machines automati-
cally join a specific channel on a public or private IRC
server, to receive further instructions. This could be for
example to perform an attack against a specified victim
or to scan certain network ranges for hosts with known
vulnerabilities. It is not even necessary for a bot to join a
channel, there are also bots which use private messages
to receive instructions from the botnet owner. Thus, a
connection to the C&C server suffices. Besides IRC,
other protocols are used more and more by bots. For
example, HTTP is more and more common as communi-
cation channel. In this case, the bot periodically polls the
C&C server and interprets the responses as commands.
Several bots also use Peer-to-Peer based protocols (see
for example the analysis of Storm worm by Stewart [19])

to avoid a central C&C server and this form of commu-
nication could become more and more prevalent in the
future.

Since bots are able to autonomously propagate further
across the network and feature keylogging and backdoor
functionalities as well, they can be seen as a combina-
tion of worms, rootkits and Trojan horses. A more de-
tailed description of botnets and their attack features is
provided in the work by the Honeynet Project [20].

2.3 Related Work

One of the earliest works related to our approach is by
Kiristoff [13]. In his presentation, he mentions that signs
of rogue IRC server are suspicious nicknames, topic
and channel names. We extend this idea and evaluate
whether or not the similarity in nicknames used by bots
can be used to detect an infected machine.

Botnets also commonly use the same IRC channel for
bots. This observation is used by Binkley and Singh
to detect suspicious IRC servers [5, 4]. They combine
TCP-based anomaly detection with IRC-based protocol
analysis and are able to detect botnets efficiently. The
system collects statistics over a complete day and aggre-
gates the collected information. In contrast, our method
works near real-time and can detect an infected machine
often earlier then our other intrusion detection system.

Chen presented a system that tries to detect botnet
traffic at edge network routers and gateways [7]. This is
similar to our approach since our system is also best de-
ployed at these observation points. Chen presented pre-
liminary statistics like mean packet length of IRC pack-
ets and the distribution of IRC messages like JOIN or
PING/PONG, but did not give statistics about the suc-
cess route of the approach. Strayer et al. use a similar
approach to examine flow characteristics such as band-
width, duration, and packet timing [21].

Livadas et al. use machine learning techniques to
identify the C&C traffic of IRC-based botnets [14].
Their approach could be combined with ours since both
are orthogonal: we use characteristics of the IRC proto-
col itself and similarity measurements to known botnets,
whereas Livadas et al. observer characteristics of the
communication channel.

Another approach to detect bot-infected machines is
behavior-based detection. One characteristic of bots is
for example that they are idle most of the time when they
wait for a command from the botherder [16]. Moreover,
bots would respond faster than a human upon receiving
of a command. Racine proposed a system that tries to
find such characteristics on Netflow traffic, but the sys-
tem had a rather high false-positive rate.

3 Communication Channel Detection

Since bots pose a severe threat in today’s Internet, we
need to develop ways to detect infected machines within
a given network. We often can not rely on common in-
trusion detection systems: bots can for example com-
promise victims via channels like email (malicious at-
tachment to an email) or drive-by downloads (malicious
websites exploiting a vulnerability in a browser), which
are often not detected by these systems. In addition, bots
can stay calm on an infected machine and only become
active at certain dates or under specific conditions. Our
approach focuses on detecting the communication chan-
nel between the bot and the botnet controller. This is the
earliest step right after the infection, so we try to detect
the compromised machine as fast as possible.

3.1 Motivation

All bots have one characteristic in common: they need
a communication channel in order to receive commands
or report status information to the botnet owner. This is
the main differentiation between a worm and a bot: both
kinds of malware propagate autonomously, but a worm
does not offer a remote control channel to the attacker

Currently, the most common method for botnet
herders to communicate with the zombie hosts and to
issue commands is to utilize IRC servers for command
and control. Bots connect to these servers and usually
join a certain channel to receive instructions on how to
proceed. However, there are bots which utilize other
communication methods like HTTP or Peer-to-Peer pro-
tocols [19]. Since the detection method described here
is based on IRC nicknames, the main focus lies on the
IRC protocol. However, our method is also applicable
to other protocols which have the property that at least
some bytes in each message between bots and botherder
stays constant. HTTP bots for example tend to have
some common strings in the URL of the botnet server,
thus they can also be detected using our method.

The main disadvantage when using IRC as communi-
cation source — from the botnet owner’s point of view —
is that one loses control over the bots as soon as the cen-
tral IRC server is not reachable anymore. Thus, a com-
mon method in botnet fighting is to shutdown known
C&C servers to prevent infected machines from receiv-
ing further commands. Although the botnet is success-
fully disabled, the zombie hosts remain infected and vul-
nerable. Therefore, we use a different approach, which
not only reveals the C&C server, but also the infected
hosts. As a result, the owner of a contaminated machine
can be informed and is able to clean it, before valuable
information leaks or the host is compromised again. Ad-
ditionally, we are able collect valuable information about
the C&C server itself, with which it is possible to infil-
trate and monitor the botnet prior to shutting it down.

The use of a standardized protocol like IRC allows an
easy detection of hosts joining the IRC network, since
it is well documented [12]. One of the first commands
issued when connecting to an IRC server is NICK, fol-
lowed by the nickname by which the host should be
identified within the IRC network. As it is not al-
lowed to have duplicate nicknames within the network,
each bot has to join utilizing a different name. This
is what we take advantage of when detecting bot in-
fected machines. A common method used by bots
to avoid duplicate nicknames is to concatenate a cer-
tain word with a random number. For example the
Worm/Rbot.210944 [1] utilizes nicknames which are
constructed as follows: country abbreviation|nine-digit
number (e.g., USA|016887436 or DE|028509327).
Some other bots use the opposite approach and con-
catenate a random word to a constant number. The
Worm/Korgo.F.var [2], for example, uses “.13” as a
constant suffix, prefixed by a random number of letters
(e.g. bmdut_13).

The principle behind our approach is simple: the nick-
name must contain a random component to avoid bots
being unable to join the IRC network due to duplicate
usernames. Besides the random part, bot names usu-
ally contain an additional constant part, which for exam-
ple holds certain information about the kind of bot (e.g.,
RBOT|XP|48124), the kind of operating system running
on the bot, or the location of the contaminated machine,
like DEU for Germany or CHN for China. These constant
parts of the nickname form a valuable starting point for
the detection of bot infected machines.

3.2 Project Rishi

Since one of the first actions of a newly infected ma-
chine is to establish a connection to the botnet server to
receive further commands, it is possible to detect a bot
even before it performs any malicious actions. There-
fore, Rishi, our proof-of-concept implementation, mon-
itors captured TCP packets for the occurrence of one
of the following IRC commands: NICK, JOIN, USER,
QUIT, and MODE. The parameters given with these
commands are extracted and stored to be further anal-
ysed by the program. The analysis focuses on the nick-
name we extracted, all other parameters are just stored
to collect additional information about the botnet, e.g.,
for tracking purposes.

Figure 3 illustrates the setup of Rishi and the process
of an attacker infecting a vulnerable machine, which in
turn connects to the C&C server to receive further com-
mands. Instead of monitoring the network traffic for ma-
licious commands issued by the attacker, Rishi listens for
the connections of infected machines to the IRC servers
hosting the botnet.

Rishi is a Python script consisting of about 1700

lines of code, which receives its data from a running
ngrep [17] instance. With the help of ngrep, we are
able to filter certain network packets. With the following
command, we can for example extract all network pack-
ets containing IRC-related information in the header:

ngrep [...] "JOINS|SNICKS|SMODES| \
SUSERS | $QUIT’ “tcpl ((tcpl[l2:1] \
\& Oxf0) $>>$ 2):4] = 0x4e49434b \
and [...]'

Every captured packet is then further analysed by the
script, which extracts the following information (if avail-
able):

Time of suspicious connection

IP address and port of suspected source host
IP address and port of destination IRC server
Channels joined

Utilized nickname

For each IRC connection a connection object is cre-
ated, which stores the above mentioned information,
plus an additional identifier. The identifier consists of
the source and destination IP address and the destina-
tion port. With the help of the identifier it is possible
to update an already existing object with new parame-
ters. For example, if a new channel is joined, no new
object is created, but the existing one is updated. To
minimize the amount of memory consumed by Rishi, the
objects are stored in a queue. Objects which are updated
move to the beginning of the queue, so they are not re-
moved from the queue as quickly as objects which do
not receive any updates. Additionally, objects belong-
ing to connections which issue the QUIT command are
removed from the queue. The basic concept of Rishi
is illustrated in Figure 4. It shows the connection ob-
ject, which stores the various information, the dynamic
whitelist (Section 3.2.3) and blacklist (Section 3.2.4) to
maintain nicknames and the queue containing a certain
number of objects currently monitored.

3.2.1 Scoring Function

After an appropriate packet has been captured and all
necessary information have been extracted, the gathered
nickname is passed to an analysis function. The anal-
ysis function implements a scoring function in order to
estimate whether or not a given suspicious host is in-
fected with a bot or not. The function checks for the oc-
currence of several criteria, like for example suspicious
substrings, special characters, or long numbers. For each
successful test, a certain number of points is added to
the overall score the particular nickname has already re-
ceived. Currently the scoring function uses a rather ad-
hoc approach based on experimental data, but we will

Botnet-Server

Centralized Router/Switch

@

'SPAN-Port

Attacker

Aengiot

Victim Host
MNetwork ("

I Attacker infiltrates vulnerable host
Infected host connects to c&c server
Rishi Server weneen. RISHI MiONItors bot commands

Figure 3: Network setup of Rishi

Analysis

s nickname
function

points

ool

network
packet with
IRC data

timestamp

Connection

object
(+ identifier) N -
destination
IP / port
new
update
Filesystem |« object
suspicious queue
connections

Figure 4: Basic concept behind Rishi, an approach to detect IRC characteristics of infected machines

further examine the influence of the scoring parameters
to the detection rate in the future.

When the analysis is finished, the final number of
points for the nickname is stored along with the other
information in the connection object. The higher the
score a nicknames receives, the more likely it is a bot
infected machine trying to contact its C&C server. If a
certain threshold is reached, Rishi triggers an alarm. In
this case, the object is marked as a possible bot and all
information about the connection are stored in a sepa-
rate file on disk. In addition, we also generate a warning
email containing all gathered information about the inci-
dent. This email is sent to one of the network administra-
tors. Since we are still in the development phase, emails
need to be manually investigated for false positives first,
before forwarding them to the responsible person.

Currently, we us a threshold of 10 points, any value

above is considered contaminated. A value of zero is
considered clean and the nickname is added to the dy-
namically changing whitelist (Section 3.2.3).

In the following, we describe the scoring function in
more detail. The first test checks for the occurrence of
suspicious substrings in the nickname. This can for ex-
ample be the name of a bot (e.g., RBOT or 133t -), the
country abbreviations (e.g., DEU, GBR, or USA), or the
operation system (e.g., XP or 2K). For each substring
found, the final score of the nickname is raised by one
point. Second, each occurrence of special characters like
[, 1, and | increases the overall points by one. A third
criteria is whether or not the nickname consists of many
digits: for each two consecutive digits, the score is raised
by one point.

The reason for the rather low increase of score is that
these strings and characters are not a true sign for a bot

infected machine. For example, many IRC users playing
online games belong to certain clans or groups, which
tend to have a so called “clan tag” in their nickname.
Thus, nicknames of clan members often use the charac-
ters [and] to surround their clan tag or abbreviation.
To avoid false positives, we are thus rather conserva-
tive with these soft indicators of bot-related nicknames.
As noted earlier, the score values and the weighting is
currently rather ad-hoc, but we are experimenting with
other scoring parameters in order to find a good justifi-
cation of the weighting.

To reduce the number of false positives, only true
signs for an infected host raise the final score by more
than one point. True signs are:

e a match with one of the regular expressions (Sec-
tion 3.2.2)

e a connection to a blacklisted server (Section 3.2.4)

e or the use of a blacklisted nickname (Section 3.2.4)

3.2.2 Regular Expression

Each nickname is tested against several regular ex-
pressions, which match known bot names. Currently,
the configuration file contains 52 different regular ex-
pressions to match several hundred nicknames known
to be used by bots. These regular expressions were
generated by analyzing more than 4,000 different bots
and their corresponding nicknames. To avoid false
alarms, the regular expression are very specialized,
each matching only a few usernames. For exam-
ple the following expression: \[[0-9]\|[0-9]{4, }
matches nicknames like [0]1234] and another ex-
pression matches names like |1234. Although both
regular expression could be merged to one, we kept
them separated to be more flexible with fine tuning.
Another example is an expression like "\ [[0-9] {1,
23\ | [A-21{2,3}\][0-9]1{4, }\1$ which matches
common bot nicknames like [00|DEU|597660],
[03|USA|147700], or [0|KOR|43724] As all
regular expressions are kept in a separate configuration
file, existing ones can be easily adjusted or new ones can
be added to keep up with the ever-increasing number of
bots.

If a bot matches one of the regular expressions, the
final score is raised by the minimum number of points
needed to trigger an alarm. Thus, in our current config-
uration, another 10 points would be added.

3.2.3 Whitelisting

To prevent certain machines from being accidently de-
tected by Rishi, the software utilizes a hard coded
whitelist, which can be adjusted via the configura-
tion file. With the help of the whitelist it is possi-
ble to exclude certain hosts from the analysis process.
Whitelisted hosts are identified either by their source

IP address, the destination IP address, or the IRC nick-
name they use. Currently, this static whitelist contains
11 source IP addresses, 13 destination IP addresses (9
overlapping with source IP addresses), and 29 IRC nick-
names. The IP addresses belong to well-known servers
within the network and the nicknames from known hu-
mans or false positives we observed.

Additionally, Rishi operates a dynamic whitelist,
which automatically adds and removes nicknames ac-
cording to their final score as returned by the analysis
function. Each nickname, which receives zero points by
the analysis function, is added to the dynamic whitelist.
Howeyver, if the score of a whitelisted nickname raises
above half of the points needed to trigger an alarm, it is
removed from the list. If it exceeds the threshold of 10
points, the nickname is automatically added to the dy-
namic blacklist, which is described later on.

During the analysis phase nicknames are compared
against both the hard coded and the dynamic whitelist.
Thus, a nickname listed in either one of the whitelists
will always receive zero points by the analysis function.
Furthermore, Rishi checks for similarity of nicknames to
names on the whitelists. The technique used for similar-
ity checks is called n-gram analysis [6]. N-gram analy-
sis uses a sliding window character sequence to extract
common features of a given data stream. The n-gram
analysis disassembles two nicknames, which are to be
compared, into parts, each containing two characters.
With these 2-grams, each part is compared with the parts
of the other nickname and the number of congruities is
counted. The more parts are identical, the more likely
both nicknames are the same or at least very similar.

With this technique we are able to automatically de-
termine if a given nickname is similar or equal to a nick-
name already stored in one of the whitelists and react ac-
cordingly. As a result, nicknames similar to a name on
the hard coded or dynamic whitelist are automatically
added to the dynamic whitelist. For example, if a user
changes his whitelisted nickname from myNickname
to myNickname_away, the new nickname will still be
similar enough to the already whitelisted nickname to
also receive zero points by the analysis function. Thus,
it is not necessary to place all known good nicknames
on the hard coded whitelist by editing the configuration
file, but let Rishi decide.

3.2.4 Blacklisting

The same concept is used by Rishi to maintain nick-
names on one of two blacklists: the first blacklist is
hard coded in the configuration file and can be adjusted
manually. The second one is a dynamic list, with nick-
names added to it automatically according to the final
score received by the analysis function. That means,
each nickname, for which the analysis function returns

more points than needed to trigger the alarm, is added to
the dynamic blacklist. Additionally, during the analysis
phase, nicknames are compared against all names stored
in either one of the blacklists so far. In case we have a
match, the minimum number of points needed to reach
the alarm threshold is added to the final score. Further-
more, if a nickname is found to be similar enough to
a name on one of the lists with the help of the n-gram
analysis, it is added to the dynamic list, too. As a result,
it is possible to detect bot names which would not re-
ceive enough points from the analysis function, e.g., due
to missing regular expressions, but are similar enough to
an already known bot name stored in one of the black-
lists and will therefore be detected.

Rishi also maintains a server blacklist for known C&C
servers. If a connection to one of those servers is estab-
lished, the final score is raised to the minimum number
of points needed to trigger an alarm. Furthermore, if the
destination port is not within the common list of IRC
ports (currently 6666 and 6667), another point is added
to the score.

3.2.5 Example

As an example, we want to describe the whole
analysis process. Imagine that the nickname
RBOT|DEU|XP-1234 was added to the blacklist due
to a match of one of the regular expressions. For some
reason, the regular expression only matches the follow-
ing country abbreviations for this kind of nickname:
DEU, USA, and GBR. The next captured IRC connection
contains the nickname RBOT|CHN|XP-5678 and it
is thus missed by the regular expression. From the
analysis function, the name would receive 7 points:

e 1 point each due to the suspicious substrings RBOT,
CHN, and XP
e 1 points each due to the two occurrences of the spe-
cial character |
e 1 point each due to two occurrences of consecutive
digits
Since the number of points is lower than the thresh-
old, it would not trigger any alarm. However, due to the
n-gram analysis against already stored nicknames, Rishi
will notice a more than 50% congruence with a name
stored on the dynamic blacklist and will therefore add
another 10 points. As a result, the analysis function re-
turns 17 points as a final score and thus triggers an alarm.

4 Limitations

Due to the fact that Rishi depends on regular expressions
as signatures to automatically identify bot infected ma-
chines, the software is limited to only detect bots for
which an expression exists. To circumvent this limita-
tion Rishi also considers certain substrings, characters,

number of digits, and destination port when evaluating
a nickname. Thus, a botname is more likely to have
a higher final score than a benign IRC name. How-
ever, there exist bots which use common names undis-
tinguishable from a real name, which cannot be detected
with the methods described. For example, the trojan Za-
pchast.AU [10], which is distributed by email, utilizes a
list of 32.398 different nicknames to choose from when
connecting to the botnet server. All of them look like
common names with a two digit number attached to the
end. For this kind of bots, it is almost impossible to de-
tect them with the help of our approach. We could add
the whole list of nicknames used by this bot to the black-
list, but this would presumably lead to a much higher
number of false positives.

Another limitation of the software is the monitoring
of protocol commands to determine a nickname or a
joined channel. Thus in case a botherder utilizes a cus-
tomized protocol, there is little chance for our approach
to detect infected machines. Since bots move away from
using IRC-based protocols to advanced techniques or
even Peer-to-Peer-based communication, the basic con-
cept behind Rishi has to evolve further.

However, as long as some protocol commands are still
used, there is a chance to detect the botnet. We exem-
plify this with the help of an incident from December
2006. During that time we observed that Rishi logged
several channel joins to an IRC server on port 54932,
without any further information like nickname or user
mode. Fortunately, we could extract the destination IP
address from the Rishi log files. We started a separated
packet capture instance to analyse network traffic to and
from the suspicious IRC server. As a result, we noticed
that the bot utilized its own IRC protocol by changing a
few basic commands to customized ones. The command
NICK was changed to SENDN, USER was changed to
SENDU, and PRIVMSG was changed to SENDM. So in
this case we were lucky as the bot missed to also change
the JOIN command which triggered our botnet detection
software. In the case where all IRC commands are cus-
tomized, there is almost no chance for Rishi to detect
an infected host at this time, as it is the case with many
signature based detection mechanisms.

Another problem could be applet frontends to IRC,
which let new users join a channel and learn what IRC
is all about. These user names often follow a charac-
teristic schema with patterns that could generate false
positives. We have not yet had any problems regarding
these web-based IRC clients For example, the ICQ net-
work hosts an web-based IRC client, which is accessible
even for users who do not have their own ICQ account.
Those users without a valid ICQ account can still use
the IRC service and get a nickname like Guest_979,
LeaP_195 or onn_5201. Since their is no regular ex-

pression which matches these names, the overall scoring
value is typically around 3-4 points:

e | point for the special character: _

e | point for an uncommon destination port (7012)

e 1-2 points due to the occurrences of consecutive

digits

Since the destination IP address and destination port
are well known, this information can be added to the
static whitelist. So far we did not experience any
problems or falsely suspected hosts while examining
such web-based IRC applications with random nick-
name generation.

Besides the above mentioned software limitations, we
are also reaching the limits of the utilized hardware. The
backbone in our testing environment uses 10 GBit Eth-
ernet with traffic peaks of up to 3 GBit/s. Due to huge
amount of traffic passing through the centralized router
of RWTH Aachen, we are experiencing packet loss and
corrupt packets since we are using a COTS system for
packet capture and no dedicated hardware solution. As
a result, Rishi can miss packets containing IRC specific
information. Thus, it is very likely that some bot in-
fected machines are completely undetected, as the pack-
ets never reach our software.

5 Results and Evaluation

We use Rishi within the network of RWTH Aachen uni-
versity. With about 30,000 computer users to support,
this network represents a typical university environment.
Rishi runs on a Quad-CPU Intel Xeon 3,2Ghz system
with 3GB of memory installed. As we are monitoring a
10 GBit network, the software consumes one complete
CPU. Memory usage is rather low with 0.2%, as the dif-
ferent dynamic lists are limited to 400 entries each.

5.1 Detection Rates

Figure 5 illustrates the distribution of final scores of the
analysis function for a number of nicknames which were
evaluated by Rishi during one day of February 2007.
Nicknames with a score equal to zero are not shown
in this figure. Four bots are detected: three of them
follow the scheme [POO|country codelfive digits] and
the fourth one is br_yZFNprk. The score for them
is clearly above the threshold of 10 points, whereas all
other nicknames receive a score of less then five. During
this particular day in February 2007, another 101 nick-
names were added to the dynamic whitelist, as they re-
ceived zero points by the evaluation function, plus an ad-
ditional 12 due to a more than 50% match with already
whitelisted nicknames.

The results are similar for other days. Benign IRC
nicknames receive a value ranging from zero to six
points, whereas bot names almost always exceed fifteen

points. Thus choosing ten as a first experimental thresh-
old seemed to be a good mean value to sort out bot in-
fected machines with little false alarms. We are currently
evaluating how the threshold influences the number of
false positives and false negatives.

We are running Rishi for about three months now
and managed to detect more than 300 different bot in-
fected machines within the campus network, already in
the early development stages. In some cases, detection
happened even prior to the detection by other intrusion
detection mechanisms we have deployed. Furthermore,
we were able to monitor botnets utilizing non-standard
IRC commands for bot communication, which was de-
scribed in the previous section. As a result, upcoming
releases of Rishi will be able to monitor network traffic
for commands which can be specified in the configura-
tion file.

Estimating the ratio of detected bots within the com-
plete network is hard since we do not know the total
number of bots within the network. However, we can
compare the number of bots detected by Rishi with the
number of infected machines detected by other intrusion
detection systems deployed. Within the university net-
work, we use a system called Blast-o-Mat [11]. Blast-o-
Mat relies on three detection approaches:

1. Detection of scanning machines via a threshold on
SYN packets a host is allowed to send out for a
specific time interval

2. Detection of machines sending out spam due to a
threshold on emails allowed to be sent within a spe-
cific time interval

3. Detection of propagation attempts with the help of
honeypots

Blast-o-Mat is the only intrusion detection system
running within the network, thus we can only compare
these two approaches.

Running nonstop for 14 days, we were able to detect
82 bot infected machines with Rishi. Of these hosts,
only 34 were also detected by Blast-o-Mat. The remain-
ing 48 were not detected since they used ways to prop-
agate which are not monitored (e.g., email or drive-by
downloads) or remained stealth on the compromised ma-
chines. Blast-o-Mat detected 20 additional hosts which
were not picked up by Rishi. Thus it seems like both
approaches should be combined to have an additional
burglar alarm within the network.

During this time period, an additional 5 hosts were
falsely suspected due to a few not too specific regular
expressions.

5.2 Observed Botnet Characteristics

Figure 6 illustrates the different ports utilized for com-
mand and control servers. Port 80 is currently the most

20 -
15 -

10 -

2.0 2.0 2.0 20
1.0 1.0 1.01.0 a8 —a

Final Scores of sone IRC nicknanes evaluated by Rishi

13.0
[}

19.013.0 19.0
oo [}

18.0
B

3.0
20202020 a

1.0 .a o 1.0 aa 1.0 a8 o 0 & 1.0 1.0 1.0 8 6 1.0 '8
a a a o o a oo o
o AR RN (A T O T T T S T s S T S S S T T S S (A N S U S N M SO o M W W U M W
A & A e 7 P T T SRR SR B Ty Y
PN I ST S S w§ A & N P R N N N
EiE N " &l o o o8 & S T F g ‘0 S o SRR SN 2 & a0
3 of & ESFTEE é’f‘ o g "@é‘ @Qéq&?ﬁ}{f\ S L P S g
[P .($? & g e &
& & & € ¢ o & & @

Figure 5: Final scores returned by the analysis function for several nicknames

frequently used port for more stealthy botnets, as it is
commonly not blocked by firewalls. We also monitored
an increase in HTTP based bots, which do not use IRC as
a protocol to communicate with the botnet herder. Such
infected machines could also be detected by payload in-
spection. The basic concept behind Rishi can be ap-
plied to this kind of communication channel. In the cur-
rent implementation, we are already experimenting with
HTTP-based bot detection. For this purpose, we also
analyse traffic for URLs containing suspicious strings
such as “cnt=DEU” in combination with “cmd.php”.
Due to the huge amount of HTTP traffic, we have lim-
ited Rishi to listen only on port 80 for HTTP bots. How-
ever, inspecting HTTP payloads will become impossible
as soon as SSL encryption is involved.

Botnet C&C Serwver Distribution by Port

Q

L]

O 1863
W =585
= 50

W e55z0
O 11640
O 1080
O 3450
O gm0

_S/

H4 [=F4

Figure 6: Botnet C&C server ports for botnets detected
by Rishi

The detected bots connected to 16 different command
and control servers located in countries all around the
world. Figure 7 illustrates the distribution of C&C
servers detected with Rishi.

Although the method presented here cannot be fully
automatized, the prefiltering of suspicious IRC activity
achieves a good and accurate detection ratio, with little
manual interaction. As described in the next case study,
it is possible to detect new unknown bots, which might

Botnet C&C Server Distribution by Country

Laler4

@ United States
O Great Britain
O Germany

[Netherlands

Figure 7: Geographical distribution of botnet C&C
server detected via Rishi

become active hours after the first infection and prevent
them from spreading in the network.

5.3 Case Study: Detecting Spam-Bots

As a case study, we want to show an example of how we
can detect special kinds of bots in an early stage. We
take a closer look at spam bots, bots which a designed to
send out large amounts of spam messages via the com-
promised machines. If these bots do not send out spam
mails, they are commonly either propagating or in sleep
mode, i.e., idling in the channel. Normal IRC bots also
do nothing if they do not receive commands from the
botherder. Due to the low volume of messages sent in
this mode, it remains a challenge to detect this kind of
stealthy bots.

With the help of the information collected by Rishi,
we spotted several hosts infected with the Trojan
Troj/Loot-BH [18], also known as Trojan.Zlob.Gen,
which at that time was not detected by the antivirus soft-
ware we were running. Thus, the machine owners were
not aware of their systems being infected.

This type of bot utilizes nicknames which look
like the following examples: jece-1.9143.1019,
jaal-1.4923.1178, or jeck-1.5120_.1586. The
only two constant parts of this names are the “Jj” at the

beginning and the substring “~1_" in the middle. This
small amount of constant parts, together with the rather
unusual large number of digits used in the nickname,
was enough to raise an alarm in the analysis phase.

With the help of the information collected with Rishi
about the botnet (e.g., C&C DNS entry, channel, and
nickname), we were able to start tracking the botnet. We
also managed to get our hands on a copy of the bot soft-
ware itself, which we immediately transmitted to the an-
tivirus company to upgrade their signatures. A total of
15 different hosts belonging to the RWTH Aachen net-
work were infected, and could all be successfully de-
tected, informed, and cleaned. Furthermore, by moni-
toring the botnet, we discovered that the bots receive an
update to their software about every two days to avoid
basic signature detection. However, they never changed
the way their nicknames were generated and therefore it
was easy to spot it among the usual IRC traffic.

After an infected host connects to the IRC-based C&C
server, the bot does not join any channel to receive addi-
tional commands. Instead, orders are directly transmit-
ted via private messages to each host connecting with a
correct bot nickname. By default, this type of bot also
does not try to propagate further and thus can not be de-
tected due to aggressive scanning behavior.

The transmitted private messages start with the com-
mand exec followed by an URL leading to an update of
the bot software or templates for spam messages. Fig-
ure § shows an example for the header part of the tem-
plate and the variables which are replaced by the bot.
Within the spam templates, the bot only needs to mod-
ify a few parameters before sending out large amounts
of spam emails.

Received: by 192.168.54.34 with SMTP id nacZcMBB;

for <%MAIL_TO>; Wed, 30 Aug 2006 01:40:03 -0700
Message-ID: <000001c6ccOfe36 f84702236a8c0@amjit>
Reply-To: "%NAME_FROM” <%MAIL_FROM>

From: "% NAME_FROM” <%MAIL_FROM>

To: %MAIL_TO

Subject: Re: tiRXda

Date: Wed, 30 Aug 2006 01:40:03 -0700

MIME-Version: 1.0

Content-Type: multipart/alternative;
boundary="—=_NextPart_000_0001_01C6CBD5.3710AC70”
X-Priority: 3

X-MSMail-Priority: Normal

X-Mailer: Microsoft Outlook Express 6.00.2800.1106
X-MimeOLE: Produced By Microsoft MimeOLE V6.00.2800.1106

Figure 8: Extract from the SPAM email template

The Trojan opens a backdoor on the compromised
machines, which allows an adversary to access the ma-
chine and send out anonymous spam emails directly.

Due to the spam-sending behaviour, the infected hosts
showed up in Blast-o-Mat, our custom intrusion detec-

tion system, some time later, too. However, the time
between the first connection to the IRC server and the
sending of spam could easily exceed a few hours, thus
we were able to detect, inform, and react on the incident
in a very early stage.

5.4 Case Study: Spotting Botnet Tracking

Along with the “regular” bots, we have also discovered
some botnet tracking hosts with our approach. A bot-
net tracker is a machine which is dedicated to connect to
known C&C servers to monitor and store all information
exchanged via the IRC channel. Therefore it is possible
to get information about updates to the bots binary, but
also retrieve knowledge about new targets a botnet is go-
ing to attack.

To prevent being the target of Distributed Denial of
Service (DDoS) attacks upon detection by the botnet
herder, some botnet tracking groups use the Tor [8] ser-
vice to anonymize their origin. Tor is a freely available
service to anonymize the true origin of a machine. The
basic principle is to route the traffic encrypted through
several different routers, a so called circuit. For each
request which does not happen within a short time pe-
riod, a new circuit is constructed. As none of these
servers stores any connection based information, it is
very hard to reconstruct from which machine a certain
request originated.

Within the network of RWTH Aachen university, sev-
eral TOR servers are located. One of these servers is also
an exit node, i.e., it can be the end point of a circuit and
sends data to other hosts in the Internet. This node fre-
quently showed up in the logfiles since the traffic from
this host contained suspicious IRC activities.

Following are two examples for botnet trackers which
were detected by Rishi during a very early development
stage:

[2006/10/29 16:05:52]

Nick: [0]]116823] Value: 17 srcIP: x.y.143.131
dstIP: xxx.xxx.124.236 dstPort: 4280

Channel: []

User: ['USER XP-9345 0 0 :[0]]116823]"]

Mode: [’MODE [0]|116823] -x+i’]

[2006/10/29 16:39:22]

Nick: [0]|360830] Value: 17 srcIP: x.y.143.131
dstIP: xxx.xxXx.166.38 dstPort: 55555
Channel: [’JOIN ##rx-noleggio## noleggius’]
User: [’'USER tilrcwa 0 0 :ESP|523075’]

Mode: [’MODE ESP|523075 -xt’, 'MODE [0][360830]

The logfile should be self-explanatory, basically it
shows the information stored in a connection object. The
suspected source host itself is running Linux and thus it
was very unlikely that this host was infected with a bot.
In addition, it did not show any additional malicious ac-
tivities like propagation attempts. A closer examination

10

-x+i’]

revealed that these connections were caused by botnet
tracking hosts.

6 Conclusion

Detecting machines infected with a bot is often not easy:
the bot can hide its presence on the machine and only
become active under certain conditions. From a network
point of view, it can be hard to detect the infection pro-
cess, since this can happen via channels like emails or
malicious websites. Due to the fact that bots need a
communication channel back to the attacker, we have
a way to detect an infected machine. In this paper we
have explored a simple, yet effective way to detect IRC-
based bots based on characteristics of the communica-
tion channel. We observe protocol messages and use
n-gram analysis together with a scoring function and
black-/whitelists to detect IRC characteristics.

Our proof-of-concept implementation Rishi has
proven to be a useful extension to existing intrusion de-
tection mechanisms. Besides the early detection of in-
fected hosts, it is also possible to determine the IRC
server the bots connect to. This information can then
also be used to monitor the network traffic to find out
more about the botnet and the actions it performs.

Currently, we are experimenting with the final score
needed to trigger an alarm, as well as, the way points
are distributed by each test performed on a nickname.
However, a fully automated tool seems not to be pos-
sible without a rather large number of false positives
on the one hand or completely undetected hosts on the
other. Especially in the case where bots utilize nick-
names composed out of random characters only, or if
innocent people accidentally use a nickname containing
suspicious strings, which trigger an alarm. Thus, it is re-
quired to have an administrator watch over the generated
messages to manually filter out false alarms. Therefore,
Rishi serves more as an extension to already deployed
intrusion detection mechanisms to provide additional in-
formation, than a standalone software.

Acknowledgments

We would like to thank the anonymous reviewers and
our shepherds Michael Bailey and David Dagon for
helpful feedback on earlier versions of this paper.

References
[1] Avira AntiVir. Worm/Rbot.210944 - Worm. 2004.

http://www.avira.com/en/threats/
section/fulldetails/id_vir/3469/worm_
rbot.210944 .html.

[2] Avira AntiVir. Worm/Korgo.F.var - Worm. 2005.
http://www.avira.com/de/threats/

section/fulldetails/id_vir/1874/worm_
korgo.f.var.html.

[3] Avira. AntiVir Personal Edition. 2006.
http://www.free—-av.de.

[4] James R. Binkley. Anomaly-based botnet server
detection. In Proceedings of FloCon 2006 Analysis
Workshop, October 2006.

[5] James R. Binkley and Suresh Singh. An algorithm
for anomaly-based botnet detection. In Proceed-
ings of USENIX Steps to Reducing Unwanted Traf-
fic on the Internet Workshop (SRUTI), pages 43—
48, July 2006.

[6] William B. Cavnar and John M. Trenkle. N-
gram-based text categorization. In Proceedings of
SDAIR-94, 3rd Annual Symposium on Document
Analysis and Information Retrieval, pages 161—
175, Las Vegas, US, 1994.

[7] Yan Chen. Irc-based botnet detection on high-
speed routers. In ARO-DARPA-DHS Special Work-
shop on Botnets, June 2006.

[8] Roger Dingledine and Nick Mathewson. Tor: The
second-generation onion route. In Proceedings
of the 13th USENIX Security Symposium, August
2004.

[9] Felix Freiling, Thorsten Holz, and Georg Wich-
erski. Botnet Tracking: Exploring a Root-Cause
Methodology to Prevent Distributed Denial-of-
Service Attacks. In Proceedings of 10th Euro-
pean Symposium On Research In Computer Secu-
rity (ESORICS05). Springer, July 2005.

[10] Jan Goebel. A short visit to trojan Zapchast.AU.
2006.
http://zerog.kulando.de/resource/
papers/download/Trojan_Zapchast.pdf.

[11] Jan Goebel, Jens Hektor, and Thorsten Holz.
Advanced honeypot-based intrusion detection.
USENIX ;login:, 31(6), December 2006.

[12] C. Kalt. Internet relay chat: Architecture, April
2000. Request for Comments: RFC 2810.

[13] John Kristoff. Botnets. In North American Net-
work Operators’ Group Meeting (NANOG32), Oc-
tober 2004.

[14] Carl Livadas, Bob Walsh, David Lapsley, and Tim
Strayer. Using machine learning techniques to
identify botnet traffic. In Proceedings of 2nd IEEE
LCN Workshop on Network Security, November
2006.

[15] Jelena Mirkovic and Peter Reiher. A taxonomy
of DDoS attacks and defense mechanisms. ACM
SIGCOMM Computer Communications Review,
34(2):39-54, April 2004.

11

[16]

[17]

[18]

[19]

[20]

[21]

A
The

Stephane Racine. Analysis of internet relay chat
usage by ddos zombies. Master’s thesis, Swiss
Federal Institute of Technologie, Zurich, April
2004.

Jordan Ritter. ngrep — network grep, Ac-
cessed: February 2007. Internet: http://ngrep.
sourceforge.net/.

Sophos. Troj/Loot-BH. 2006.
http://www.sophos.com/security/
analyses/trojlootbh.html.

Joe Stewart. Storm worm ddos attack. In-
ternet: http://www.secureworks.com/
research/threats/storm-worm/?threat=
storm-worm, Accessed: February 2007.

The Honeynet Project. Know Your Enemy:
Tracking Botnets, March 2005. http://www.
honeynet.org/papers/bots/.

Detecting Botnets with Tight Command and Con-
trol. W. timothy strayer, robert walsh, carl livadas,
and david lapsley. In Proceedings of the 31st IEEE
Conference on Local Computer Networks, Novem-
ber 2006.

Bot Nicknames

following table shows an incomplete list of some

variants of bot nicknames we have monitored using
Rishi. The malware names were determined with the
help of the antivirus software AntiVir [3]. The term
“not found” means we could not find the name of the bot.

1D Nickname AV-scanner output
1 [00|DEU|172507] Worm/Aimbot.AE.6
2 |DEU|2K]|92193 not found
3 [XP]|6454734036 Worm/Rbot.171008.6
4 DEU|245500 Worm/Rbot.166912.5
5 LL-9985168738 Worm/Rbot.146432.10
6 7X-44697595408 Worm/Rbot.166912.7
7 ASN-649955079 Worm/Rbot.90112.46
8 7ZD-91817267335 Worm/Rbot.91136.62
9 [RAPEDV2]775571 ‘Worm/Rbot.455680
10 {ripper}-310167 Worm/SdBot.56924.A
11 [SOUL]983586 Worm/SdBo.100864.22
12 [FUCK]-56507 Worm/Rbot.are
13 vjlr_13 W32/Parite
14 ezbxtju_12 ‘Worm/Korgo.I
15 jeck-1_8887_1350 Trojan.Zlob.Gen
16 RBOT|DEU|XP-20366 not found
17 [XP-4848456] not found
18 [M]DEU|973140123 not found
19 | RBOT|F|USA|XP-54143 not found
20 MIR-[53681665] not found
21 [MOOJ|USA|83868] not found
22 DEU|XP-SPO-44733 not found
23 Ss-6098404166 Worm/Rbot.174080.8
24 POP3-3555035 Worm/Rbot.189440.5
25 H33-24054789964 Worm/IRCBot.QY
26 br_mxjDusy not found

12

